GFD-Tagungsband zur Fachtagung 2020 mit der Universität Regensburg

Fachliche Bildung und digitale Transformation - Fachdidaktische Forschung und Diskurse

Christian Maurer, Karsten Rincke und Michael Hemmer (Hrsg.)

Universität Regensburg

Christian Maurer, Karsten Rincke und Michael Hemmer (Hrsg.)

Fachliche Bildung und digitale Transformation - Fachdidaktische Forschung und Diskurse

Fachtagung der Gesellschaft für Fachdidaktik 2020

GFD-Tagungsband 2020

Fachliche Bildung und digitale Transformation - Fachdidaktische Forschung und Diskurse

Herausgeber: Christian Maurer, Karsten Rincke (Universität Regensburg, Physikdidaktik) und Michael Hemmer (GFD)

Gesellschaft für Fachdidaktik (GFD) Geschäftsstelle der GFD

Prof. Dr. Michael Hemmer Westfälische Wilhelms-Universität Münster Institut für Didaktik der Geographie Heisenbergstraße 2 48149 Münster Örtliche Tagungsleitung Universität Regensburg

Prof. Dr. Karsten Rincke Dr. Christian Maurer

Institut für Didaktik der Physik Universitätsstraße 31 93053 Regensburg

https://creativecommons.org/licenses/by-nd/3.0/de/

Universität Regensburg

Inhaltsverzeichnis

SILKE BARTSCH & HEIKE MÜLLER

KARIN VOGT & TORBEN SCHMIDT

KARIN VOGT & TORBEN SCHMIDT

Bildungsauftrag im Fach

Bildungsauftrag

Medien

KATRIN BIEBIGHÄUSER

Forschendes Lernen im Virtuellen Austausch -

Working Paper zum Fallbeispiel Esskultur im globalisierten Alltag

Digitale Transformation im Fremdsprachenunterricht und dessen

Digitale Transformation (fremd)sprachlicher Lehr-Lernprozesse und der

Spielend babbeln? Das Üben fremdsprachlicher Fertigkeiten mit digitalen

36

40

44

48

Vorworte und Tagungsablauf MICHAEL HEMMER Vorwort des Vorsitzenden der Gesellschaft für Fachdidaktik zur Tagung 2020 8 KARSTEN RINCKE Vorwort der örtlichen Tagungsleitung zum digitalen Format der Tagung 2020 10 CHRISTIAN MAURER Vorwort der örtlichen Tagungsleitung zum Programm der Tagung 2020 11 CHRISTIAN MAURER 13 Übersicht des Tagungsprogramms Beiträge zu Workshops SASCHA HENNINGER & KATHARINA SCHNUR (Weiter)entwicklung der 21st century skills bei Lehrpersonen der Naturwissenschaftlichen Unterrichtsfächer 20 Beiträge aus Strang A NICOLE RASCHKE Geographieunterricht digital – Zur Konzeption eines kollaborativen Seminars zum Gestaltungsprozess von digitalen Lehr-Lernumgebungen 24 CHRISTIAN ALBRECHT, STEFAN SEEGERER, VOLKER FREDERKING, JOCHEN KOUBEK & RALF ROMEIKE Digitale Kompetenzen im Fach überfachlich fördern - Ein Blended-Learning-Kurs für das Unterrichten in der digitalen Welt 28 ULIANA YAZHINOVA Förderung von Korpuskompetenzen als Teil der Medienkompetenzen im (Fremd)sprachenunterricht 32

	CHRISTIANE LÜTGE & CAROLA SURKAMP	
	Digitale Transformationen? Perspektiven für die fremdsprachliche Literatur- und Kulturdidaktik	52
	Sibylle Köllinger	
	Digitale Medien im Musikunterricht zwischen Anspruch und Unterrichtswirklichkeit: Überlegungen zur Erstellung eines fachspezifischen Kompetenzmodells Competences-Virus-Development (Co-Vi-D-20) vor dem Hintergrund der aktuellen Corona-Disease	56
	Monika Unterreiner	
	Digitale Medien im Musikunterricht - Studienergebnisse zur Unterrichtspraxis an der bayerischen Mittelschule	60
Be	eiträge aus Strang B	
	Luisa Lauer & Markus Peschel	
	Gestaltung von Lehr-Lernumgebungen mit Augmented Reality (AR)	64
	SÖREN TORRAU	
	Recherchieren im digitalen Wandel - Schülerhandlungen in algorithmesierten Strukturen	68
	TILMAN MICHAELI, STEFAN SEEGERER & RALF ROMEIKE	
	Alexa, was ist eigentlich Künstliche Intelligenz?	72
	Annika Waffner	
	Digitalität und Bildrezeption. Perspektiven	76
	MONIQUE MEIER & THOMAS HEILAND	
	Beurteilung digitaler Bildungsmedien aus der (gemeinsamen) Perspektive der Erziehungswissenschaften und Fachdidaktik	80
	Marc Godau	
	Die Macht der Tablets und Klaviaturen im Musikunterricht. Zur Soziomaterialität der digitalen Transformation schulischen Musikunterrichts	84
	Ingo Wagner	
	Neue Möglichkeiten zukünftiger Lehrkräftebildung? – Digitale Transformation am Beispiel des fächerverbindenden Projektes "digiMINT"	88
	Olivia Wohlfart & Ingo Wagner	
	Digitale Kompetenzen von (angehenden) Lehrkräften – ein systematisches "Umbrella-Review" zum TPACK Modell	91
	RAPHAEL MORISCO, ADNAN SEITHE, JANINA BALLACH & DANIEL WEICHSEL	
	digiMINT: Reale und virtuelle Räume zur Entwicklung einer fachübergreifenden Digitalkompetenz von Lehramtsstudierenden	95
	Moritz Mödinger, Alexander Woll & Ingo Wagner	
	Mehrwert oder Spielerei? Der Einfluss visuellen Feedbacks durch digitale Endgeräte auf das motorische Lernen bei Schüler*innen im Sportunterricht – ein systematischer Forschungsüberblick	90

	EVELINA WINTER, MAGDALENA MICHALAK & MAREN CONRAD	
	Vom Bild zum transmedialen Bilderbuch - Lernarrangemen in	100
	migrationsbedingten heterogenen Klassen	103
Ве	eiträge aus Strang C	
	MAIK PHILIPP	
	Digitalitätsbasierte Transformationen des Lesens: auf dem Weg zum epistemisch wachsamen Lesen	107
	Cordula Meißner	
	Datengeleitetes sprachenübergreifendes Lernen mit digitalen Sprachdaten	111
	Malte Sachsse	
	Zwischen Implementation und Kompensation. Zur Konstruktion digitaler Lern- und Erfahrungswelten in musikdidaktischer Literatur	115
	CHRISTIAN HULSCH & MARKUS GLUGLA	
	Mehr als 1 und 0 - Informatische Kompetenzen als integraler Bestandteil technischer Bildung im Primarbereich?!	119
	Stefan Korntreff & Susanne Prediger	
	Fachdidaktische Qualität von YouTube-Erklärvideos	123
	Julia Suckut & Sabrina Förster	
	Entwicklung einer Kategorisierung zur handlungsnahen Beschreibung digitalisierter Lehr-Lernumgebungen	127
	CHRISTINA KNOTT, JOHANNES WILD, CHRISTINE SONTAG, HEIDRUN STÖGER, MARINA GOLDENSTEIN & ANITA SCHILCHER	
	Strategieerwerb beim schriftlichen Erzählen in der Primarstufe	131
	CLEMENS GRIESEL	
	Digital ist erste Wahl? – kognitive Aktivierung in der Gestaltung von Lernumgebungen in Lehr-Lern-Labor-Settings	135
	CAROLIN FÜHRER & JUDITH PREIß	
	Ästhetische Erfahrung in digitalen Lernszenarien. Eine quasi-experimentelle Studie mit Deutschlehramtsstudierenden	139
	Julia von Dall Armi	
	Wie schreibt man eine Textanalyse? Ein Vergleich von Vermittlungskonzepten in Online-Tutorials	143
	TORBEN BJARNE WOLFF & ALKE MARTENS	
	Digitalisierung gleich Transformation?!	147
Ве	eiträge aus Strang D	
	CHRISTINA SCHMIDT	
	Die Verständigung über Literatur im Deutschunterricht – Potenziale und Herausforderungen eines korpuslinguistischen Zugangs	151

	Kai Bliesmer, Michael Komorek, Annika Roskam & Christin Sajons	
	Digitale Transformation und außerschulisches Lernen (Übersicht)	155
	CHRISTIN SAJONS & MICHAEL KOMOREK	
	Kontextorientiertes selbstgesteuertes Problemlösen in Schülerlaboren - Ein Design-Based Research Ansatz	157
	KAI BLIESMER & MICHAEL KOMOREK	
	Didaktische Rekonstruktion zur Weiterentwicklung von außerschulischen Lernorten an der Küste	161
	Annika Roskam & Michael Komorek	
	Handlungen und kognitive Verarbeitungsprozesse von Besuchenden in einer Ausstellung zur physikalischen Dynamik in Nationalpark-Häusern	165
	MICHAEL KOMOREK & CHRISTIN SAJONS	
	Komplementäre Vernetzung außerschulischer Lernangebote	169
	CLAUS BOLTE, FABIAN STOLLIN, JENS MÖLLER, & ANNA SÜDKAMP	
	Analyse diagnostischer Kompetenzen von (angehenden) Chemielehrer*innen	173
	Hanna Janben & Nicole Raschke	
	Interaktive Lernlandkarte der außerschulischen Lernorte in Sachsen - Ein digitales Instrument zur besseren Verankerung von außerschulischen Lernorten in den schulischen Unterricht	177
Po	osterbeiträge	
	LISA STINKEN-RÖSNER	
	Implementation digitaler Medien in die naturwissenschaftliche Lehramtsausbildung	181
	Mario Engemann & Bardo Herzig	
	Lehrerkooperation und Digitalisierung. Gestaltung digital-kooperativer Arbeitsbeziehungen von Lehrkräften und ReferendarInnen am Beispiel des Schulfachs Pädagogik	185
	Melissa Meurel	
	Unterrichtsvideos als digitales Medium in der geographiedidaktischen Hochschullehre	189
	CHRISTINA LENTZ, TINA OTTEN, PETER DÜKER & JÜRGEN MENTHE	
	Lehrkräftefortbildung zur Förderung von Informationskompetenz (an	
	Beispielen der Covid-19 Pandemie)	193
		193
	Beispielen der Covid-19 Pandemie)	193 196
	Beispielen der Covid-19 Pandemie) ANDREAS RAAB Digitale Informations- und Kommunikationstechnologie im schulischen Sportunterricht – eine Systematisierung der Einsatzmöglichkeiten auf	
	Beispielen der Covid-19 Pandemie) ANDREAS RAAB Digitale Informations- und Kommunikationstechnologie im schulischen Sportunterricht – eine Systematisierung der Einsatzmöglichkeiten auf curricularer und erziehungswissenschaftlicher Grundlage	

Universität des Saarlandes

Luisa Lauer Markus Peschel

Gestaltung von Lehr-Lernumgebungen mit Augmented Reality (AR)

Dieser Beitrag beleuchtet den Diskurs des Einsatzes digitaler Medien in Lehr-Lernsituationen aus fachdidaktischer Perspektive am Beispiel der digitalen Technik Augmented Reality (AR). Es werden Besonderheiten der Gestaltung von Lehr-Lernumgebungen mit AR sowie Grundsätze und Leitlinien eines fach-medien-didaktischen Einsatzes von AR in fachlichen Lehr-Lernsituationen erläutert. Zunächst wird der theoretische Hintergrund zum Einsatz von AR in fachlichen Lehr-Lernsituationen dargelegt. Anschließend erfolgt eine Veranschaulichung des Einsatzes von AR am Beispiel der Konzeption und Entwicklung einer AR-Lehr-Lerneinheit zum Thema Elektrik für Schüler*innen der 3. und 4. Klasse.

Theoretischer Hintergrund: AR in fachlichen Lehr-Lernsituationen

Ein digitales Medium zeichnet sich durch charakteristische, didaktisch-methodische Gestaltungsmöglichkeiten in Lehr-Lernsituationen aus (Peschel, 2016). Gremien wie die KMK (2017) und Fachgesellschaften wie die GI (2016), die GFD (2018), der GSV (2018) und die GDSU (2020) vertreten verschiedene Positionen (mit vielen Überschneidungen bzw. Gemeinsamkeiten) zum Einsatz digitaler Medien in fachlichen Lehr-Lernsituationen. Gervé und Peschel beschreiben im Modell "Mediales Lernen im Sachunterricht" (2013) die medienpädagogische bzw. mediendidaktische Sicht auf den Einsatz digitaler Medien in Lehr-Lernsituationen: Die Mediendidaktik fokussiert nach diesem Modell erzieherische, persönlichkeitsbildende, gesellschaftliche und politische Aspekte des Medieneinsatzes, die notwendig zur Anbahnung von Medienkompetenzen sind und beschreibt, systematisiert und bewertet diese Aspekte der Ziele, Inhalte, Wirkungen und Nutzungsweisen digitaler Medien. Die Mediendidaktik modelliert bzw. expliziert Aspekte des Einsatzes digitaler Medien von den technischen Spezifika zur Lehr-Lernsituation hin und stellt Kriterien zur Auswahl und Entwicklung von digitalen Medien sowie Kriterien zur Analyse des Medieneinsatzes bereit. In Ergänzung dazu steht die Position der Fachdidaktik, nach der nicht nur die mediale Unterstützung fachlichen Lernens, sondern gleichzeitig auch die fachliche Grundlegung medialen Lernens erfolgen muss (GFD, 2018). Modellierungen Medialen Lernens sowie die daraus zu explizierenden Begrifflichkeiten und unterrichtspraktischen Überlegungen sollten daher einer fach-medien-didaktischen Konzeption entsprechen, statt einer differenten Betrachtung der Einzelpositionen (Lauer et al., 2020a). Somit besteht die Notwendigkeit, einen Fachinhalt fach-medien-didaktisch zu (re-)konstruieren (Reinfried et al., 2009) und dabei eine Aushandlung zu erreichen zwischen den technischen, medienpädagogischen und mediendidaktischen Möglichkeiten und Grenzen des digitalen Mediums sowie den spezifischen Anforderungen bzw. Schwierigkeiten des Fachinhalts (GFD, 2018).

Die digitale Technik AR erweitert die (subjektive) reale Wahrnehmung durch digital generierte Inhalte und ermöglicht so die räumliche und semantische Echtzeit-Verknüpfung realer und digitaler Inhalte (Azuma, 2001). AR kann – je nach AR-Gerät bzw. AR-Umsetzung – entweder über spezielle halbtransparente Brillen (AR-Smartglasses = "see-through-AR") oder in der Kamerasicht von Display-basierten Geräten (z.B. Tablet = "look-on-AR") erlebt werden. Objekte, die ohne ein AR-Gerät nicht wahrnehmbar sind (also nicht in der realen Welt existieren), werden als virtuell bezeichnet (Demarmels, 2012). Im Unterschied zu ähnlichen immersiven Technologien wie Virtual Reality (VR) zeichnet sich AR durch das gleichzeitige Vorhandensein realer *und* virtueller Inhalte aus, wobei die Realität als Hauptbezugsebene durch virtuelle Inhalte angereichert wird (Milgram & Kishino, 1994). AR kann somit als eigenständiges "digitales Medium" im fach-medien-didaktischen Sinn betrachtet werden (Lauer et al., 2020a; Peschel, 2016).

Bezüglich des Einsatzes von AR(-Geräten/-Technologien) in fachlichen Lehr-Lernsituationen stellen sich – wie für alle (digitalen) Medien – aus medienpädagogischer bzw. mediendidaktischer Sicht Fragen bzgl. der Individualisierung von Lehr-Lernprozessen durch AR bzw. Fragen bzgl. der Einsatzmöglichkeiten von Echtzeit-Einblendungen virtueller Informationen, die mit realen Objekten in Verbindung stehen. Aus fach-medien-didaktischer Sicht sollte darüber hinaus eine sensible Rekonstruktion des Fachinhalts im Sinne einer Aushandlung zwischen den technischen Möglichkeiten und Grenzen von AR, den Vorstellungen der Schüler*innen und den Spezifika des zugrunde liegenden Fachinhalts erfolgen. Diese

Aushandlung wird im Folgenden am Beispiel der Konzeption und Entwicklung einer AR-Lehr-Lernumgebung für Schüler*innen der Primarstufe (Lauer et al., 2020b) veranschaulicht.

Gestaltung einer AR-Lehr-Lernumgebung für Schüler*innen der Primarstufe

In einem ersten Schritt wird das Thema des Lerninhaltes der AR-Lehr-Lernumgebung eingegrenzt. Dabei werden aufgrund der nur wenigen Befunde bzgl. des Lernens mit AR in der Primarstufe die Lerninhalte bestehender fachdidaktischer Forschung zum Medium AR mit den physikalischen Fachbezügen der Primarstufe, Sekundarstufe und universitären Bildung analysiert. Wegen der schwer zugänglichen Inhalte, Vorstellungen und abstrakten Lerninhalte (Stork & Wiesner, 1981; Wilhelm & Hopf, 2018) scheint es interessant, zu untersuchen, inwiefern sich der Themenbereich Elektrik für den Einsatz von AR zur Visualisierung verschiedener Inhalte eignet. Zu AR im Themenbereich Elektrik scheint es zudem bislang die meisten Publikationen fachdidaktischer Forschung (allerdings vorrangig für die Sekundarstufe) zu geben: So gibt es Forschungsergebnisse bezogen auf AR-Umsetzungen zur...

- ...Visualisierung multipler Repräsentationen (Ainsworth, 2006), wie z.B. zur Echtzeit-Messwertanzeige bei elektrischen Schaltungen (Altmeyer et al., 2020)
- …teilweisen oder vollständigen Simulation realer Experimente, z.B. zum Bau elektrischer Schaltungen (Peng & Müller-Wittig, 2010), zu Versuchen zu Elektronen im Magnetfeld (Ibanez et al., 2017) und zur elektromagnetischen Induktion (Dünser et al., 2012)
- ...Visualisierung idealisierter (elektro-)magnetischer Feldlinien (Buesing & Cook, 2013) und elektrischer Ladungen (Permana et al., 2019) oder zur Darstellung des elektrischen Potenzials entlang elektrischer Schaltungen als "Höhenprofil" (Weatherby et al., 2020) als Modellvorstellung.

Durch Aushandlung zwischen den technischen Spezifika von AR, den Schüler*innenvorstellungen und den Lernschwierigkeiten zum Thema Elektrik aus der Sekundarstufe II (Wilhelm & Hopf, 2018), insbesondere zum Zeichnen elektrischer Schaltskizzen, sowie zu Befunden von Problemen von Schüler*innen der Primarstufe beim Thema Elektrik im Allgemeinen (Stork & Wiesner, 1981; Wodzinski, 2011), wurde der Lerninhalt "Elektrische Schaltskizzen" für die AR-Lehr-Lernumgebung ausgewählt.

Die Spezifika der AR-Lehr-Lernumgebung werden im nächsten Schritt durch eine spezifische fach-medien-didaktische Aushandlung zwischen den Schüler*innenvorstellungen, erwarteten Lernschwierigkeiten bei Grundschüler*innen und den technischen Möglichkeiten und Realisierungsschwierigkeiten von AR bestimmt: Die erste erwartete Lernschwierigkeit (und technische Realisierungshürde) stellt die Erkennung der realen Bauteile seitens der Schüler*innen (besonders zu Beginn) und seitens der AR-Technik dar. Dazu sollte die AR stets das Schaltsymbol des Bauteils (vor allem beim Kennenlernen der Symbole) hervorheben. Insbesondere die Unterscheidung verschiedener Zustände des Realobjekts "Schalter" innerhalb eines Schaltkreises kann dabei Schwierigkeiten bereiten, weshalb die AR stets das korrekte Schaltsymbol (offen/geschlossen) räumlich nahe am zugehörigen Realobjekt (z.B. Schalter) und innerhalb der Schaltung korrekt anzeigen und in Echtzeit auf die Veränderung des Schalterzustandes reagieren sollte. Dies erfordert eine Echtzeit-Überwachung aller Bauteile bzgl. deren Position im Raum und deren Zustand durch die AR-Anwendung. Die zweite erwartete Lernschwierigkeit (und technische Realisierungsschwierigkeit) besteht in der Erkennung der logischen Verbindung der Bauteile bzw. in der Abstraktion vom realen Kabelverlauf¹ zur vereinfachten Schaltskizze. Eine Echtzeit-Visualisierung der logisch passenden Schaltskizze in vereinfachter Form sollte unabhängig von der Lage der Bauteile die Anordnung der Kabel durch AR unterstützen. Hierfür muss die AR allerdings die physische Verbindung der Bauteile in Echtzeit überwachen und diese in eine semantisch passende Schaltskizze übersetzen können. Eine konsekutiv zu erwartende Lernschwierigkeit für Schüler*innen (und gleichzeitig auch Herausforderung in der Vermittlung) ist die Identifikation (technisch) sowie die Unterscheidung zwischen Reihen- und Parallelschaltung durch die Schüler*innen. Eine für diesen Zweck nutzbare AR sollte also die Änderung einer Schaltung (z.B. Reihen- zu Parallelschaltung) in Echtzeit erkennen und entsprechend die jeweils passende Schaltskizze visualisieren.² Abbildung 1 stellt die Ergebnisse dieser Aushandlung noch einmal

¹ Dies betrifft eine typische schulische Situation, bei der die Kabel besonders lang und/oder verworren sind. Hier muss zunächst eine "Entwirrung" und Vereinfachung der Realschaltung erfolgen, um die semantische Verbindung mit der abstrahierten Schaltskizze herzustellen.

² Die technische Unterscheidung (und damit auch die Echtzeit-Visualisierung) von Parallelschaltungen ist derzeit noch in Arbeit. Ebenfalls noch zu klären bzw. zu untersuchen sind die Wirkungen der verschiedenen Darstellungen der Schaltskizze von Parallelschaltungen.

66

in Kürze dar und illustriert die Spezifika der AR anhand von Bildern des ersten finalen Prototyps (Lauer et al., 2020b).

Fazit

Die räumliche und semantische Echtzeit-Verknüpfung realer und virtueller Inhalte stellt die zentrale technische und fach-medien-didaktische Gestaltungsinnovation von AR gegenüber anderen (digitalen) Medien dar. Ergebnisse aus der Forschung zum Lernen mit AR deuten darauf hin, dass nicht die Technologie über den Lernerfolg entscheidet, sondern die Art der Implementierung anhand der Anforderungen des Fachinhalts (Wu et al., 2013). Daher erscheint es umso wichtiger, den Einsatz von AR in Lehr-Lernsituationen verstärkt bzgl. der fachdidaktischen Grundlegung bzw. bzgl. des fachdidaktischen "Werts" auszurichten.

Um AR aus fachdidaktischer Sicht gewinnbringend in Lehr-Lernsituationen einsetzen zu können, sollte daher neben medienpädagogischen und mediendidaktischen Überlegungen stets eine fach-medien-didaktische Aushandlung zwischen den technischen Möglichkeiten und Grenzen von AR, den Vorstellungen der Schüler*innen und den konkreten Anforderungen bzw. Schwierigkeiten des jeweiligen Fachinhalts erfolgen.³ Die (allgemein-)fachdidaktischen Ausführungen müssen letztlich bzgl. AR für die jeweils zugrundeliegende Fachdidaktik samt Begrifflichkeiten und Herangehensweisen in fachlichen Lehr-Lern-Situationen spezifiziert und expliziert werden.

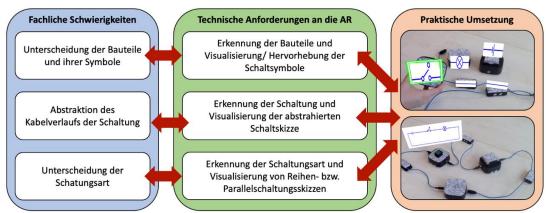


Abb. 1. Schematische Darstellung der Gestaltung der AR als Aushandlung zwischen fachlichen Schwierigkeiten und technischen Anforderungen an die AR.

Danksagung

Wir danken der AG von Herrn Prof. Dr. Paul Lukowicz vom Deutschen Forschungszentrum für Künstliche Intelligenz (DFKI) in Kaiserslautern für die technische Entwicklung und Optimierung der im Rahmen dieses Beitrags beschriebenen Hard- und Software für die AR-Lehr-Lernumgebung zu elektrischen Schaltskizzen für Grundschüler*innen.

Förderhinweis

Die im Rahmen dieses Beitrags beschriebene Forschung bzw. technische Entwicklung wird vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Projekts GeAR (Förderkennzeichen 01JD1811B) finanziert.

³ Das deAR-Modell von Seibert et al. (2020) kann in diesem Kontext als praxis-gerichtetes Konzeptionsund Reflexionsmodell zu fachdidaktisch eingebetteter AR dienen.

Literaturverzeichnis

- Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198.
- Altmeyer, K., Kapp, S., Thees, M., Malone, S., Kuhn, J., & Brünken, R. (2020). The use of augmented reality to foster conceptual knowledge acquisition in STEM laboratory courses-Theoretical background and empirical results. British Journal of Educational Technology, bjet.12900.
- AG Medien und Digitalisierung der GDSU (2019). Sachunterricht und Digitalisierung Positionspapier der GDSU - AG Medien und Digitalisierung.

 Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in
- augmented reality. IEEE Computer Graphics and Applications, 21(6), 34-47.
- Buesing, M., & Cook, M. (2013). Augmented Reality Comes to Physics. TPT, 51(4), 226-228.
- Demarmels, S. (2012). Als ob die Sinne erweitert würden... Augmented Reality Emotionalisierungsstrategie. IMAGE 16, 34-51.
- Dünser, A., Walker, L., Horner, H., & Bentall, D. (2012). Creating Interactive Physics Education Books with Augmented Reality. Proceedings of the 24th Australian Computer-Human Interaction Conference, November 26-30, Melbourne, Victoria, Australia, 107-114.
- Garzón, J., & Acevedo, J. (2019). Meta-analysis of the impact of Augmented Reality on students' learning gains. Educational Research Review, 27, 244-260.
- Gesellschaft für Informatik (GI) 2016. Dagstuhl-Erklärung Bildung in der digital vernetzten Welt.
- Gervé, F., & Peschel, M. (2013). Medien im Sachunterricht. In E. Gläser & G. Schönknecht (Hrsg.), Sachunterricht in der Grundschule (S. 58-79). Grundschulverband.
- Ibanez, M.-B., De Castro, A. J., & Delgado Kloos, C. (2017). An Empirical Study of the Use of an Augmented Reality Simulator in a Face-to-Face Physics Course. 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT), 469-471.
- Kultusministerkonferenz (KMK) (2017). *Bildung in* der digitalen Welt -Kultusministerkonferenz.
- Lauer, L., Peschel, M., Marquardt, M., Seibert, J., Lang, V., & Kay, C. (2019). Augmented Reality (AR) in der Primarstufe - Entwicklung einer AR-gestützten Lehr-Lerneinheit zum Thema Elektrik. In S. Habig (Hrsg.). Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen. Jahresband der GDCP 2019 (S. 944-947).
- Lauer, L., Peschel, M., Bach, S. & Seibert, J. (2020a). Modellierungen Medialen Lernens. In K. Kaspar, M. Becker-Mrotzek, S. Hofhues, J. König & D. Schmeinck (Hrsq.). Bildung, Schule Digitalisierung (S. 391-396). Münster: Waxmann.
- Lauer, L., Peschel, M., Altmeyer, K., Malone, S., Brünken, R., Javaheri, H., Amiraslanow, O., Grünerbl, A., & Lukowicz, P. (2020b). Real-time visualization of electrical circuit schematics: An augmented reality experiment setup to foster representational knowledge in introductory physics education. The Physics Teacher (im Druck).
- Milgram, P., & Kishino, F. (1994). A Taxonomy of Mixed Reality Visual Displays. IEICE Transactions on Information Systems, E77-D(12).
- Peng, J. J., & Müller-Wittig, W. (2010). Understanding Ohm's law: Enlightenment through augmented reality. ACM SIGGRAPH ASIA 2010 Sketches on - SA '10, 1-2.
- Permana, A. H., Muliyati, D., Bakri, F., Dewi, B. P., & Ambarwulan, D. (2019). The development of an electricity book based on augmented reality technologies. Journal of Physics: Conference Series, 1157, 032027.
- Peschel, M. (2016). Mediales Lernen Eine Modellierung als Einleitung. In M. Peschel (Hrsg.). Mediales Lernen - Beispiele für inklusive Mediendidaktik (S. 7-16). Baltmannsweiler: Schneider Verlag
- Reinfried, S., Mathis, C., & Kattmann, U. (2009). Das Modell der Didaktischen Rekonstruktion. Eine innovative Methode zur fachdidaktischen Erforschung und Entwicklung von Unterricht. Beiträge zur
- Lehrerinnen- und Lehrerbildung, 27(3), 404–414.

 Seibert, J., Lauer, L., Marquardt, M., Peschel, M. & Kay, C. (2020). deAR: didaktisch eingebettete Augmented Reality. In K. Kaspar, M. Becker-Mrotzek, S. Hofhues, J. König & D. Schmeinck (Hrsg.). Bildung, Schule Digitalisierung (S. 460-465). Münster: Waxmann.
- Stork, E. & Wiesner, H. (1981). Schülervorstellungen zur Elektrizitätslehre und Sachunterricht. Bericht über einen Versuch zur Integration von fachdidaktischer Forschung und schulpraktischer Ausbildung an der Universität. Sachunterricht und Mathematik in der Primarstufe 9, (S. 218-230).
- Weatherby, T., Wilhelm, T., Burde, J.-P., Beil, F., Kapp, S., Kuhn, J., & Thees, M. (2020). Visualisierungen bei Simulationen von einfachen Stromkreisen. *Naturwissenschaftliche Kompetenzen in der* Gesellschaft von morgen., 1007-1010.
- Wilhelm, T., & Hopf, M. (2018). Schülervorstellungen zum elektrischen Stromkreis. In H. Schecker, T. Wilhelm, M. Hopf, & R. Duit (Hrsg.), Schülervorstellungen und Physikunterricht (S. 115-138). Springer Spektrum.
- Wu, H.-K., Lee, S. W.-Y., Chang, H.-Y., & Liang, J.-C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41-49.
- Wodzinski, R. (2011). Naturwissenschaftliche Fachkonzepte anbahnen-Anschlussfähigkeit verbessern. IPN Leibniz-Institut f. d. Pädagogik d. Naturwissenschaften an der Universität Kiel.