

Augmented Reality beim Experimentieren

Luisa Lauer Prof. Dr. Markus Peschel

Didaktik des Sachunterrichts Lehramt für Primarstufe Universität des Saarlandes

www.markus-peschel.de

Elektrizität in der Grundschule (?)

Augmented Reality beim Experimentieren

Das Projekt "GeAR"

Elektrizität in der Grundschule (?)

Augmented Reality beim Experimentieren

Das Projekt "GeAR"

Elektrizität in der Grundschule

Die Realität:

Elektrizität in der Grundschule (?)

Verbindliche Kompetenzerwartungen

- Stromkreisläufe unterschiedlicher Komplexität selbst bauen und darstellen
- Wirkungen des elektrischen Stroms benennen und seine Gefahren einschätzen

Verbindliche Inhalte

- Stromkreislauf
- Gefahren

01.06.21

Wirkungen, z.B. Wärme, Licht, Bewegung

- Stromkreis mit Batterie und Lampe bauen
- Schaltskizzen zeichnen
- Elektrische Leitfähigkeit verschiedener Stoffe
- Sicherheitsvorkehrungen

https://www.saarland.de/dokumente/thema_bildung/KLPSUGS.pdf, 28-30

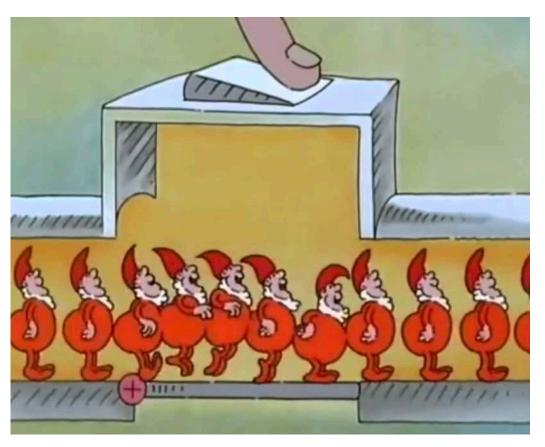
Elektrizität in der Grundschule (?)

EL 3 Polarisation und Influenz

Experimenta Elementarphysik (2003). Versuchsbeschreibung/Gebrauchsanleitung. Berlin: Cornelsen, 86.

Nicht alle Energieformen, die von den Menschen täglich genutzt werden, stehen unbegrenzt zur Verfügung. Erdöl, Kohle oder Erdgas werden verbrannt. Dabei wird chemische Energie in Wärme- oder elektrische Energie umgewandelt. Erdöl, Kohle und Öl werden verändert und sind hinterner verschwunden (nicht erneuerbare Energiequellen). Eines Tages werden sie vollständig verbraucht sein.

Kraft, D. & Pommerening, R. (2004). *Pusteblume – Das Sachbuch* 4. *Schuljahr* (Neubearbeitung). Braunschweig: Bildungshaus Schulbuchverlage, 33.


Gebauer, M. (2008). DUDEN Themenlexikon Sachunterricht 3/4. Berlin/Mannheim: Duden Paetec. 187.

01.06.21

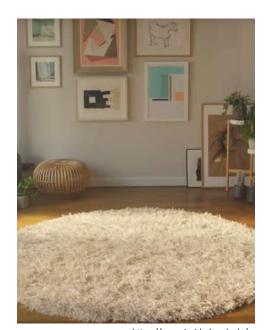
Elektrizität in der Grundschule (?)

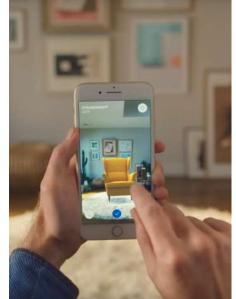
https://www.youtube.com/watch?v=DMEVAIX_rd8

Elektrizität in der Grundschule (?)

Augmented Reality beim Experimentieren

Das Projekt "GeAR"




Augmented Reality – längst alltäglich?

https://thenextweb.com/insider/2016/08/19/augmentedreality-love-letter-pokemon-go/ (05.11.2018)

https://www.inside-handy.de/news/46607-ikea-place-app (05.11.2018)

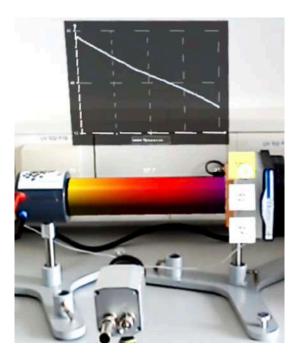
01.06.21

Augmented Reality – längst alltäglich?

01.06.21

Augmented Reality beim Experimentieren?

Den Lernenden werden mit AR-Software implementierte, (audio-) visuelle Hilfen und Anregungen in experimentellen Lehr-Lern-Situationen dargeboten



Augmented Reality beim Experimentieren?

https://www.wihoforschung.de/_medien/downloads/16DHL1021-1022_gLabAssist_Poster_Fachtagung.pdf

Augmented Reality beim Experimentieren-Forschungsstand

AR im Kontext experimenteller Lehr-Lernsituationen in schulähnlichen Szenarien...

- ...kann zu Motivationssteigerungen seitens der Lernenden führen (z.B. Di Serio et al. 2013, Kuhn et al. 2016)
- ...ermöglicht die Visualisierung von Sachverhalten/ Phänomenen, die mit dem bloßen Auge nicht erkennbar sind (Wu et al. 2013)
- ...kann die kognitive Verarbeitungstiefe erhöhen durch sinnstiftende Verbindung von realen und digitalen Inhalten (Dunleavy, Dede & Mitchell 2009)
- ...kann Probleme hinsichtlich der technischen Nutzung seitens der Probanden hervorrufen (Lin et al., 2011) und erfordert zusätzliche Instruktion durch die Lehrenden (Munoz-Christobal et. al. 2015)

Elektrizität in der Grundschule (?)

Augmented Reality beim Experimentieren

Das Projekt "GeAR"

Das Projekt "GeAR"

Gelingensbedingungen und Grundsatzfragen von Augmented Reality in experimentellen Lehr-Lernszenarien entlang der schulischen Bildungsbiographie

- Projektlaufzeit: 3 Jahre
- Durchführung diverser Studien zu eigens zu entwickelnden, AR-gestützten, experimentellen Lehr-Lernszenarien

Gewinnung verallgemeinerbarer Erkenntnisse zum Einsatz von AR im experimentellen Lernsituationen

Das Projekt "GeAR" – Akteure und Aufgaben 🧼

Didaktik der Physik, TU KL

Gestaltung der AR-Lernszenarien und Erforschung der Gelingensfaktoren für Sek I und II

Didaktik des Sachunterrichts, UdS

Gestaltung der AR-Lernszenarien und Erforschung der Gelingensfaktoren für PS

Î

Lehrstuhl für empirische Bildungsforschung, UdS

Koordination, Erstellung und Auswertung der Testinstrumente

DFKI, Abteilung Eingebettete Intelligenz, KL

Entwicklung und Bereitstellung der Technik zur sensorgestützten Messung des Rezeptions- und Produktionsverhaltens

DFKI, Abteilung Intelligente Benutzerschnittstellen, SB

Entwicklung und Bereitstellung der Technik für Interaktion in AR und physiolog. Belastungsmessung

Das Projekt "GeAR" - Was wird getan?

Zentrale Arbeits- und Forschungsinhalte

- Entwicklung einer AR-gestützten experimentbasierten Lehr-Lernumgebung für den Sachunterricht, Thema: Elektrizitätslehre in der Primarstufe im Grundschullabor für offenes Experimentieren (GOFEX)
- Identifikation von Gelingensbedingungen zur Implementierung von AR in Lehr-Lernprozesse im Sachunterricht der Primarstufe
- Erforschung der besonderen Anforderungen von GrundschülerInnen bei der Arbeit mit AR

Das Projekt "GeAR" – Studiendesign

Vorstudie (12 Monate)

- Entwicklung und sukzessive Adaption der AR-Lernumgebungen
- Experimentelle Variation der Informationsdarbietung
- Identifikation geeigneter Testformate
- Ableitung von Gelingensfaktoren für die Hauptstudie

Hauptstudie (24 Monate)

- Untersuchung des Einflusses von AR auf das Rezeptions- und Produktionsverhalten von GrundschülerInnen beim experimentellen Lernen im Sachunterricht
- Untersuchung des Einflusses von AR auf die kognitive Belastung von GrundschülerInnen beim experimentellen Lernen im Sachunterricht

Ermittlung systemischer Gelingensfaktoren für eine Implementation von AR in bestehende (schulische) Infrastrukturen

Augmented Reality beim Experimentieren

Luisa Lauer Prof. Dr. Markus Peschel

Didaktik des Sachunterrichts Lehramt für Primarstufe Universität des Saarlandes

www.markus-peschel.de

